
34 Software Synthesis for DSP Using Ptolemy

Setup()

Schedule

Allocate Resources

Generate Initialization Code

Generate Wormhole Input Code

Inside

Wormhole?

Generate Wormhole Output Code

Fire go() of each block in schedule Fire go() of each block in schedule

Initialize Main Loop

End Main Loop

Wrapup()

T F

 Figure 14. Code Generation Procedure



Software Synthesis for DSP Using Ptolemy 33

 Figure 13. Examples of Host-to-DSP interaction using wormholes.
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 Figure 11. Scheduling result for the example in figure 9.
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 Figure 9. A multirate example for illustrating the spread/collect
mechanism.
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 Figure 7. Scheduling result for the example in figure 6.
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 Figure 5. Inheritance Tree for Code Generation Stars.
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 Figure 3. A Domain (XXX) consists of a set of Stars, Targets and
Schedulers that support a particular model of computation. A
sub-Domain (YYY) may support a more specialized model of
computation.
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 Figure 4. Inheritance Tree for Single Processor Targets.
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 Figure 1. Block objects in code generation applications of Ptolemy
synthesize code in some target language. PortHoles and
Geodesics provide methods for managing the exchange of data
between blocks.

PortHole PortHole

Block

•  initialize()

•  start()

•  go()

•  wrapup()

•  clone()

PortHole

•  initialize()

•  receiveData()

•  sendData()

PortHole PortHole

Geodesic

Plasma

Geodesic

•  initialize()

•  numInit()

•  setSourcePort()

•  setDestPort()

Particle

•  type()

•  print()

•  operator << ()

•  clone()

Particle

Block Block

 Figure 2. A complete Ptolemy application (a Universe) consists of a
network of Blocks. Blocks may be Stars (atomic) or Galaxies
(composite). The “XXX” prefix symbolizes a particular domain
(or model of computation).
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Edward Lee's Gabriel project (see references), he returned to academia, where he is having con-

siderably more fun.
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compiler. It is not clear how effective today’s compilers would be in eliminating this dead-code.

In Ptolemy, a polyphase FIR filter would simply be defined as a star, thus producing no dead-

code.

Significant features distinguishing Ptolemy are the modularity gained from its objected

oriented design and its support for heterogenous architectures. We already support many schedul-

ing algorithms. It is simple to test new scheduling heuristics and contrast those results with the

supported schedulers. Also, we are not constrained to one particular scheduler for a signal pro-

cessing application. Thus, a user is able to choose different schedulers for the various child-targets

or domains in a single DSP application. For all other systems that we are aware of, a single sched-

uler is an integral part of the system.

The parallel schedulers are of particular interest. Here we are able to split, under special

circumstances, the various invocations of a star instance over multiple processors. To do this we

have defined Spread, Collect, Send and Receive stars. A great deal of support is provided for het-

erogeneous targets. For example, when a heterogeneous target specification is designed, previ-

ously defined targets can be used as the basic building blocks to more complex systems. The

building block targets, in turn, can be either single-processor or multiple-processor targets.

5.0 Future Work

Although code generation is beginning to mature in Ptolemy, it is by no means finished.

We have only begun to explore buffer management techniques to use memory more efficiently,

Currently, in the assembly language domains, all stars must communicate through memory, not

registers. Hence, the more fine-grained a star is, the more penalty it suffers. For example, a simple

add star must first read in its two inputs from memory and then write its output to memory. Even

though a simple operation like add might take one cycle on a DSP, the add could potentially take

four or more cycles. Future versions of Ptolemy will use registers to exchange data, as done in [1].

Because there are no data-dependent decisions in the SDF domain, it is possible in principle to do

more efficient register allocation than can be done for more conventional high-level languages
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inside of a wormhole, we generate code to read the data from the Ptolemy Universal construct.

Then we generate the main loop code and finally generate code to write the data into the Ptolemy

construct. The wormhole code is written is a way which automatically synchronizes the DSP sys-

tem and the host workstation. If we are not inside a wormhole, we simply generate the main loop

code. Finally, we close the main loop and then fire the wrapup() methods of all of the blocks rele-

vant to a particular application.

4.0 Conclusions

 In this paper, we have introduced the code generation aspects of Ptolemy. It has been

demonstrated that this platform provides an extensible signal processing code generation environ-

ment. Given the object-oriented design, Ptolemy allows the user to easily define new targets,

stars, and schedulers. Once new blocks are defined they are easily incorporated into the Ptolemy

environment, promoting code reuse. The ptlang preprocessor makes target and star writing sys-

tematic, especially for those unfamiliar with C++ or the Ptolemy kernel.

Comparing Ptolemy to the other DSP code generation platforms such Comdisco DPC [1],

Mentor DSP Station, and Descartes [7], is difficult since we have addressed somewhat orthogonal

issues. Some of these other code generators will do better in terms of efficiency for most SDF

assembly language dataflow graphs. The reason for this lies in the fact that we have not imple-

mented register allocation. We will be incorporating register allocation in the near future (see sec-

tion 5.0). We can, however, compare Ptolemy to the other code generators in terms of features.

The major differences concern the handling of multirate signal processing. To implement a

multirate graph, the Comdisco system uses “hold” signals on blocks. This introduces run-time

conditional branching whenever the hold pins are connected. Unfortunately, the conditional

branching is required even if the control flow is totally predictable at compile time. The Mentor

DSP Station is built on top of the Silage language, which has only a limited mechanism for

expressing multirate systems. Silage contains upsample and downsample operators; however, it is

impossible to write a polyphase multirate FIR filter block. To efficiently implement a multirate

FIR filter (getting a polyphase implementation), Silage relies on dead-code elimination by the



Summary of Code Generation Procedure

Software Synthesis for DSP Using Ptolemy 19

side, obeys the semantics of one domain (in this case, it works like an SDF simulation actor), but

on the inside, contains actors for another domain entirely.

Data communication between the host computer and the DSP target architecture is

achieved in the wormhole boundary. In the SDF domain, data is transferred to the input porthole

of the wormhole. The input porthole of a wormhole consists of two parts: one is visible from the

outside SDF domain and the other is visible in the inside code-generation domain. The latter part

of the porthole is designed in a target-specific manner, so that it sends the incoming data to the tar-

get architecture. In the output porthole of the wormhole, the inner part corresponding to the inside

code-generation domain receives the data from the DSP hardware, which is transferred to the

outer part visible from the outside SDF domain. In summary, for each target architecture, we can

optionally design target specific wormholes to communicate data with the Ptolemy simulation

environment; all that is needed to create this capability for a new Target is to write a pair of rou-

tines for transferring data that use a standard interface.

3.0 Summary of Code Generation Procedure

In this section we will review how the various modules of the Ptolemy platform interact to

generate code for a target application. The code generation procedure is detailed in figure 14.

First, the setup() method is called for all blocks relevant to particular application. This allows the

schedulers, target modules, and stars to initialize internal variables. Next, the schedule pass is

done. The scheduler returns a list that details the firing order of the blocks in a particular applica-

tion. Based on this schedule, the resources can be allocated. In the case of assembly code, the

memory is allocated as well. Note, the resource allocation stage must follow the scheduling stage

so that the buffer lengths are known. Now we are ready to generate the initialization code for the

given application. At this point, the initCode() method of all the blocks are fired. Finally, we are

ready to generate the main loop code.

First we initialize the main loop. Notice that the code generation algorithm forks into two

different paths, one signifying that the code currently being generated is intended for a target on

the inside of a wormhole, and the other for applications not running inside a wormhole. If we are
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If memory is used to communicate between blocks, then in most cases it is possible for the

Collect and Spread to be implemented simply by overlaying memory buffers; in such cases no

code is required to implement these blocks. The AnyAsm pseudo-domain described in section 2.4

provides facilities for actors that work by this kind of buffer address manipulation.

It is worth emphasizing that the sub-universe does not express the execution order of the

blocks, which is already determined by the parallel scheduler. For example, in figure 12-(b), the

execution order of this block is not A, A, Spread, “send”, and B, as might be expected if an SDF

scheduling were to be performed with the sub-universe. The order is A, “send”, A, and B accord-

ing to the schedule in figure 11. The sub-universes are created only for the allocation of memory

and other resources before generating the code.

2.5.3 Wormholes

A significant feature of Ptolemy is the capability of intermixing different domains or tar-

gets by wormholes. Suppose a code-generation domain lies in the SDF domain, where part of the

application is to be run in simulation mode on the user’s workstation and the remainder of the

application is to be downloaded to a DSP target system. When we schedule the actors that are to

run in the outside SDF-simulation domain at compile-time, we generate, download, and run the

code for the target architecture in the inside code-generation domain. For the purposes of this sec-

tion, we will say “SDF domain” to refer to actors that are run in simulation mode, and “code gen-

eration domain” for actors for which code is generated.

 In the example of figure 13-(a), a DSP target system is coded to estimate a power spec-

trum of a certain signal. At run-time, the estimated spectrum information is transferred to the host

computer to be displayed on the screen. Thus, the host computer monitors the DSP system. In the

next example in figure 13-(b), a DSP system performs a complicated filtering operation with a sig-

nal passed from the host computer, and sends the filtered result back to the host computer. In this

case, the DSP hardware serves as a hardware accelerator for number crunching. By the wormhole

mechanism in Ptolemy, as demonstrated in the above examples, we are able to make the host

computer interact with the DSP system. In Ptolemy, a wormhole is an entity that, from the out-
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2.5.2 Spread/Collect

In the example of figure 6, we assume that the graph is homogeneous: no sample rate

change occurs in the blocks. In such homogeneous applications, each star is naturally assigned to

one processor. However, many signal processing applications are multirate, allowing us to split

the invocations of a star across multiple processors. Furthermore, operations on blocks of sam-

ples, such as an FFT, or operations on vectors make an SDF graph non-homogeneous. Consider

the simple multirate application in figure 9, where block A generates two tokens and block B con-

sumes three tokens. One iteration of this universe consists of three invocations of block A and two

invocations of block B. The precedence relation among these invocations can be described with

the acyclic precedence graph (APG) as shown in figure 10. We assume that there is no data depen-

dency between invocations of block, and assume the same for block B. In the figure, A1 repre-

sents the first invocation of A, A2 represents the second, etc. The APG graph represents the

communication pattern between the invocations.

In a target architecture with two processors, a valid schedule for the APEG graph is shown

in figure 11. According to the schedule, the target would splice the appropriate send and receive

stars into the graph. As can be seen in the APEG, B1 receives data from not only A1 but also A2.

Also note that A2 has been assigned to the other processor. Since block B1 consumes 3 tokens

(figure 10), we need a special block to collect tokens from sources A1 and A2 for the input to B1,

and to preserve the appropriate order. This special block is called a Collect star. The sub-universe

created for processor 1 is illustrated in figure 12-(a). The Collect star gathers the outputs from

both block A and the receive star.

On the other hand, two invocations of block A are assigned to second processor. Among

the four output tokens generated from block A in this processor, the first output token is routed to

processor 1 and the rest are fed into block B. This behavior can be expressed by introducing

another special block, called a Spread star, as shown in figure 12-(b). Note that the sample rate is

changed between block A and the Spread star, causing block A to be executed twice. The Spread

star directs the first output token of block A to the input buffer of the “send” star; the remaining

three tokens are directed to the input buffer of block B.
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Suppose that the scheduler generates the schedule as shown in the Gantt chart in figure 7.

By assigning star B and star A to different processors, the parallel scheduler introduces interpro-

cessor communication between processor 2 and processor 1. The cost of the communication over-

head is dependent on the target. Based on the information that is specified in the target definition,

the scheduler schedules the communication resources and reserves the time-slots in the generated

schedule.

The next step is to generate code for each processor. For processor 2, code for star B and

the “send” star should be generated sequentially. To generate code, however, it is not sufficient to

concatenate the code of star B and the code of the “send” star. We first have to allocate the mem-

ory and registers appropriately in the processors. Since each processor is also a target, it can allo-

cate the hardware resources suitably for the generated code, given a certain galaxy. Thus, sub-

universes are generated for the individual processors after the parallel scheduling is performed, as

shown in figure 8. Note that the “send” and “receive” stars are automatically inserted by the

Ptolemy kernel when creating the sub-universes. The multiple-processor target class is responsi-

ble for defining “send” and “receive” stars.

Once the generated code is loaded, processors run autonomously. The synchronization

protocol between processors is hardwired into the “send” and “receive” stars. One common

approach in shared-memory architectures is the use of semaphores. Thus a typical synchroniza-

tion protocol used is to have the send star set a flag signaling the completion of the data transfer;

the receive star would then wait for the proper semaphores to be set. When the semaphores are

set, the receive star will read the data and clear the semaphores. In a message passing architecture,

the send star may form a message header to specify the source and destination processors. In this

case, the receive star would decode the message by examining the message header. The routing

path from the source to the destination processor is determined at the compile-time as explained

in section 2.3.2. Any specific routing algorithm and routing mechanism are not assumed in

Ptolemy, but rather should be provided by the target class.
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Start(), initCode(), go(), wrapup(), and execTime() make up the virtual methods of a star.

Users are free to write additional methods that are called from one of five methods listed. The dif-

ferentiating trait between start(), initCode(), go(), and wrapup() methods is when the method is

called. The start() method is called before the schedule is generated and before any memory is

allocated. It is responsible for setting up information that will affect scheduling and memory allo-

cation, such as the number of values that are read from a particular porthole or the size of an array

state. The initCode() method is called before the schedule is generated and after the memory is

allocated; code generated by initCode() appears before the main loop.

The next method to be called is the go() method. This method is called directly from the

scheduler. Hence the code generated in the go() method makes up the main loop code. Finally, the

wrapup() method is called after the schedule has been completed, allowing the star to place code

after the main loop code. For example, a typical use of this method in assembly code generation

would be to define subroutines after the main loop code. The final virtual method that star writers

may overload is execTime(). This method returns a number that indicates the approximate time to

complete one firing of the star. This information is essential for the parallel schedulers.

Stars are typically written not in C++ directly, but rather for a preprocessor called ptlang.

This preprocessor generates the “standard boilerplate” necessary to properly initialize states and

portholes, create code blocks in a more natural manner, and to register the star with the system so

that instances of it may be created by specifying the class name. It also generates documentation

for the star.

2.5 Interprocessor Communication

2.5.1  Send/Receive

When the target architecture is a multiple processor system, the programmer selects a par-

allel scheduler that best fits best the target and the application. The parallel scheduler determines

which actors to assign to which processing elements, as well as when to execute them in each pro-

cessing element. As an example, consider the simple case in figure 6, where all blocks are homo-

geneous (producing and consuming a single token).
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input data. Other code generation stars can check if any of their outputs are connected to a Black-

Hole, and then conditionally generate code based on this fact. Also, all input buffers to Black-

Holes are mapped into one single memory location, so even if stars do not check to see if a

BlackHole is connected to one of its outputs, minimal buffer memory is utilized. The other type of

AnyAsmStar that exists is the Fork star. A Fork star splits the data path into two or more paths;

however, all data paths can share a single buffer. A series of connected Fork stars with inter-

spersed delays can be collapsed and maintained at the output buffer where the first Fork was con-

nected. As can be seen, AnyAsmStars are defined where no target language specific code needs to

be generated. Instead, wise buffer management can lead to a general solution applicable to all

code generation domains.

For each of the leaf nodes in figure 5, there exist predefined star libraries. However, for

most users’ needs, these libraries will be insufficient. As a result, special attention has been given

to make star writing in Ptolemy, like Gabriel, easy and systematic [25]. Unlike Gabriel and other

code generators previously mentioned, Ptolemy is object oriented, thus allowing users to easily

re-use code. For example, the C code generation domain has the family of stars fixed lattice filter,

adaptive lattice filter, and a vocoder. Here the vocoder star was derived (in the sense of C++

derived classes) from the adaptive lattice filter, in turn derived from the fixed lattice. Karjalainen

in [26] states that object oriented programming environments are well suited for DSP program-

ming methodology.

A typical user-defined code generation star will consist of portholes, states, code blocks, a

start() method, an initCode() method, a go() method, a wrapup() method, and an execTime()

method. Portholes, states and code blocks are all data members of a star. Portholes specify the

inputs and outputs of the star and their types. States define user settable parameters or internal

memory states required in the generated code. Code blocks are a pseudo code specification of the

target language. By pseudo code, we mean that the code block is made up of the target language

and star macro functions. These macro functions can be defined at any level of the inheritance

tree. Macro functions include parameter value substitution, unique symbol generation with multi-

ple scopes, and state reference substitution.
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2.3.3 Extending beyond the SDF model: dynamic constructs

We have applied the idea of mixed-domain scheduling to support dynamic constructs for

code generation. Here a dynamic construct is a data-dependent construct such as if-then-else, do-

while, or recursion. Ptolemy defines a new domain called CGDDF for these dynamic constructs.

By putting this new domain inside an “SDF Wormhole”, the whole application can be scheduled

statically. The dynamic constructs inside the SDF Wormhole change the run time execution pro-

file from the scheduled one. We have developed a technique that schedules dataflow graphs with

run-time decision making, aiming to minimize the cost of run-time decisions [14]. We will define

a specific Target class for this dynamic construct domain and generate suitable control code for

the target architecture corresponding to the dynamic constructs.

2.4 Stars

Ptolemy has two basic types of stars: simulation stars and code generation stars. For pur-

poses of this paper, discussion will be limited to code generation stars.

The derivation tree for all currently defined abstract star classes is shown in figure 5. By

an abstract star class, we mean that the classes are never used to generate target language code

directly. Instead, these classes define macro function expansion and functional interfaces to target

specified code streams. The leaf nodes1 of the tree are used as parents for user definable code gen-

eration stars. All methods that are common to all code generation stars reside in base code gener-

ation star class (CGStar). Similarly, all code common to assembly code generation stars is found

in the assembly language star (AsmStar), and all code common to higher level languages is

defined in HLLStar.

Of special interest is the class AnyAsmStar. Stars derived from AnyAsmStar can be uti-

lized in any assembly code generation domain. These stars do not produce code; their purpose is

to manipulate the input and/or output buffers connected to these stars. Currently, there are two

AnyAsmStars: BlackHole and Fork. We also plan to implement the actors Spread and Collect

(described in section 2.5.2) as AnyAsm stars. A BlackHole star is a data sink that discards its

1.  For example, in figure 5, the leaf nodes are: Sproc, 56000, 96000, AnyAsm, Silage, and C.
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match the sample rates. The result is a hierarchical clustering; within each cluster, the techniques

described above can be used to generate a schedule. The code then contains nested loop constructs

together with sequences of code from the actors. The loop scheduling techniques used in Ptolemy

are described in [9]; generalization of loop scheduling to include dynamic actors is discussed in

[19].

2.3.2 Parallel scheduling

We have implemented three scheduling techniques that map SDF graphs onto multiple-

processors with various interconnection topologies: Hu’s level-based list scheduling, Sih’s

dynamic level scheduling [17], and Sih’s declustering scheduling [18]. The target architecture is

described by its Target object, a kind of MultiTarget. The Target class provides the scheduler with

the necessary information on interprocessor communication to enable both scheduling and code

synthesis. Targets also have parameters that allow the user to select the type of schedule, and

(where appropriate) to experiment with the effect of altering the topology or the communication

costs.

The scheduling techniques implemented in Ptolemy are retargettable in that they do not

assume any limited set of interconnection topologies. When a scheduler incurs a requirement of

interprocessor communication between processors, it instructs the target object to schedule the

hardware resources for communication and compute the communication cost. The scheduler uses

this information to decide whether the incurred communication cost is low enough to merit

exploiting the parallelism. For example, in the OMA target [24], which has a shared-bus and

shared-memory architecture, the requests for the shared bus from all processing elements are

determined at compile-time. Taking advantage of the communication compile-time information,

we can reduce the run time communication costs.

The multiple-processor scheduler produces a list of single processor schedules, copying

them to the child targets. Given these single-processor schedules, the same schemes as discussed

above are re-used to generate the code for each child processor target. Currently, we are targeting

the Sproc from Star Semiconductor, the CM5 from Thinking Machines, the DSP-3 from AT&T,

and various parallel machines using the Motorola 56000 and 96000 DSPs.
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• Determine the order in which actors are to be executed on a processor;

• Arrange the execution of actors into standard control structures, like nested loops.

Not all schedulers perform all these functions (for example, we permit manual assign-

ments of actors to processors if that is desired).

A key idea in Ptolemy is that there is no single parallel scheduler that is expected to handle

all situations. Users can write schedulers and can use them in conjunction with schedulers we

have written. As with the rest of Ptolemy, schedulers are written following object-oriented design

principals. Thus a user would never have to write a scheduler from ground up, and in fact the user

is free to derive the new scheduler from even our most advanced schedulers. We have designed a

suite of specialized schedulers that can be mixed and matched for specific applications. After the

scheduling is performed, each processing element is assigned a set of blocks to be executed in a

scheduler-determined order.

2.3.1 Single-processor schedulers

For targets consisting of a single processor, we provide two basic scheduling techniques.

In the first approach, we simulate the execution of the graph on a dynamic dataflow scheduler and

record the order in which the actors fire. To generate a periodic schedule, we first compute the

number of firing of each actor in one iteration of the execution, which determines the number of

appearances of the actor in the final scheduled list. An actor is called runnable when all input

samples are available on its input arcs. If there is more than one actor runnable at the same time,

the scheduler chooses one based on a certain criterion. The simplest strategy is to choose one ran-

domly.There are many possible schedules for all but the most trivial graphs; the schedule chosen

takes resource costs into account, such as the necessity of flushing registers and the amount of

buffering required, into account (see [8] for detailed discussion of SDF scheduling). The Target

then generates code by executing the actors in the sequence defined by this schedule. This is a

quick and efficient approach unless there are large sample rate changes, in which case it corre-

sponds to completely unrolling all loops. This scheduler is similar to one used in Gabriel [5].

The second approach we call “loop scheduling”. In this approach, actors that have the

same sample rate are merged (wherever this will not cause deadlock) and loops are introduced to
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2.2.2  Multiple-Processor Targets

 Targets representing multiple processors are also derived from the CG target class. The

base class for all homogeneous multiple-processor targets is called MultiTarget; a MultiTarget has

a sequence of child Target objects to represent each of the individual processors. The decomposi-

tion of function is done in such a way that classes derived from MultiTarget represent the topol-

ogy of the multi-processor network (communication costs between processors, schedules for use

of communication facilities, etc.), and single-processor child targets can represent arbitrary types

of processors. The resource allocation problem is divided between the parent target, representing

the shared resources, and the child targets, representing the resources that are local to each proces-

sor.

We have implemented, or are in the process of implementing, both “abstract” and “con-

crete” multi-processor targets. For example, we have classes named CGFullConnect and

CGSharedBus that represent sets of homogenous single-processor targets of arbitrary type, con-

nected in either a fully connected or shared-bus topology, with parametrized communication

costs. We are also working on models for actual multiple-processor systems such as the CM-5, the

AT&T DSP-3, the ordered transaction architecture [23], the Ariel Hydra board, and the Spectrum

VASP.

The design of Ptolemy is also intended to support heterogenous multi-processor targets.

For such targets, certain actors must be assigned to certain targets, and the cost of a given actor is

in general a function of which child target it is assigned to. We have developed parallel schedulers

that address this problem [17].

2.3 Schedulers

Given a Universe of functional blocks to be scheduled and a Target describing the topol-

ogy and characteristics of the single- or multiple-processor system for which code is generated, it

is the responsibility of the Scheduler object to perform some or all of the following functions:

• Determine which processor a given invocation of a given Block is executed on (for multipro-

cessor systems);
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implemented are an S-56X1 target and the CM5 from Thinking Machines. The latter is an exam-

ple of a multiprocessor C language target. To define multiprocessor targets, the concept of Parent-

Child target relationships is used. For example, the CM5 target contains an arbitrary number of C

child targets. For our specific configuration of the CM5 at Berkeley, there are 128 child targets.

2.2.1  Single-Processor Targets

For any given code generation galaxy, a Target must be specified. The Target defines how

the generated code will be collected, specifies and allocates resources such as memory, and

defines code necessary for proper initialization of the platform. The Target will also specify how

to compile and run the generated code. Optionally, it may also define wormholes (covered in sec-

tion 2.5.3).

 The derivation tree for all currently defined single-processor targets is shown in figure 4.

At the top of the tree is the generic code generation target (CG). All code common to all code gen-

eration targets resides in the CG target. Methods defined here include virtual methods2 to gener-

ate, display, compile and run the code, and a method to call these methods based on target or user

specified parameters. The Assembly language target adds methods for the allocation of physical

memory and interrupt handling. The higher level language target (HLL) contains methods to

define and initialize variables, arrays, and include files.

The object-oriented design of Ptolemy code generation makes target specification easy.

For a typical target, the target writer must overload the compile and run methods. If the target is

an assembly language target, the writer must also specify the memory. Multiple inheritance3 can

also be used to define similar targets. For example, as is shown in figure 1, both of the Motorola

simulator targets are derived from a common Motorola simulator target for either the Sim56 or

Sim96 target.

1.  The S-56X is an S-bus card designed by Berkeley Camera Engineering and marketed by Ariel. It contains a Motorola DSP
56000 and a Xilinx FPGA.

2.  In C++, a virtual method in a class is a method that can be optionally overloaded in derived classes in such a way that the appro-
priate function is selected at run time.

3.  In C++, multiple inheritance means that a class has two or more parent classes.
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specific information; they “ask” the Target to determine communication costs and “ask” the Block

to determine execution time, resources needed, etc.

2.0 Code Generation with Ptolemy

2.1 General Framework

To use Ptolemy to implement an algorithm, the problem is represented as a hierarchical

dataflow graph. Two interfaces are provided: a graphical interface based on VEM, the graphic edi-

tor that is part of U.C. Berkeley’s Octtools CAD system [21], and a text interface based on Oust-

erhout’s extensible interpreter language Tcl [22]. The user builds graphs hierarchically out of

existing blocks, and may also link in user-written blocks by using Ptolemy’s incremental linking

facility. A special preprocessor makes user-written atomic blocks (stars) easier to produce.

While this paper focuses on code generation facilities, a key feature of Ptolemy is its abil-

ity to interface different models of computation. For example, code on a DSP board can interact

with a discrete-event or logic simulation running on a workstation. Similarly, a register-transfer-

level simulation of hardware (complete with programmable DSPs modeled functionally) can exe-

cute generated code and process signals synthesized in another Ptolemy domain. This gives

Ptolemy most of its power when applied to hardware-software codesign. The interfacing mecha-

nism that permits one model of computation, or domain, to interface cleanly with another is called

a wormhole, after the theoretical cosmological phenomenon widely used in science fiction writing

that may connect widely separated regions of space, or even different universes. This mechanism

is described in [6, 20], and is explained in the context of code generation in section 2.5.3.

2.2 Targets

In Ptolemy, a Target class defines those features of an architecture pertinent to code gener-

ation. Each domain, which synthesizes a specific language such as C or Motorola 56000 assem-

bly, has a simple target that will generate code and optionally compile or assemble the code. More

elaborate Target definitions are derived from these. The more elaborate targets generate and run

code on specific hardware platforms or on simulated hardware. Some examples that have been
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Targets of a code generation Domain target the same language; for example, Blocks that generate

code for the Motorola 56000 using the SDF model of computation form their own domain1. A

Scheduler will exploit knowledge of these semantics to order the execution of the Blocks. SDF

and DDF are domains related to one another as illustrated in figure 3. Stars and Targets are shown

within each domain. The inner Domain (SDF) in figure 3 is an illustration of a sub-Domain,

which implements a more specialized model of computation than the outer Domain (DDF). Hence

all its Stars and Targets can also be used with the outer Domain. Schedulers can be associated

with more than one Domain, but a Scheduler for a sub-Domain is not necessarily valid within the

outer Domain.

For code generation, Domains are further subdivided according to the language synthe-

sized. Hence, an SDF domain synthesizing C code is a domain that we call CGC (code generation

in C). An SDF domain synthesizing assembly code for the Motorola DSP56000 family is called

the CG56 domain. We have also developed SDF domains that synthesize assembly code for the

Motorola DSP96000 family (CG96) and the Sproc multiprocessor DSP from Star Semiconductor.

Finally, a Silage code generation domain is being used to couple to hardware synthesis tools

developed at Berkeley [2].

As a simple example of how Blocks, Schedulers, and Targets can be mixed and matched,

consider a set of Blocks that generate assembly language code for Motorola DSP56000 family

processors. We might choose to use any of several Targets; examples of Targets that have been

implemented include one that runs the assembled code on a simulator on the workstation, one that

describes an S-bus card with a single 56000 processor on a workstation, and one that describes a

set of four interconnected processors on a single card. It is also possible to define targets that have

not been built. In these cases the generated code runs on functional simulations of the processors

in the Thor domain in Ptolemy [20]. Most targets have parameters that select what scheduler is to

be used; we have several single- and multiple-processor Schedulers that use different algorithms

for determining partitioning and order of execution of stars. These schedulers have no processor-

1.  This definition of a Domain is different from the previous definition used in Ptolemy. When Ptolemy was solely a simulation
environment, two distinct Domains would not share the same model of computation. Now, two distinct Domains can share the
same model of computation as long as they target two distinct languages.
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In DDF, Stars are enabled by data at their input PortHoles. That data may or may not be consumed

by the Star when it fires, and the Star may or may not produce data on its outputs. More than one

Star may be fired at one time if the Target supports this parallelism. We have used this domain to

experiment with static scheduling of programs with run-time dynamics [14, 15].

1.1.2  SDF

Synchronous dataflow (SDF) [8] is a sub-Domain of DDF. SDF Stars consume and gener-

ate a static and known number of data tokens on each invocation. Since this is clearly a special

case of DDF, any Star or Target that works under the SDF model will also work under the DDF

model. However, an SDF Scheduler can take advantage of this static information to construct a

schedule that can be used repeatedly. Such a Scheduler will not always work with DDF Stars.

SDF is an appropriate model for multirate signal processing systems with rationally-related sam-

pling rates throughout [15], and is the model used exclusively in Ptolemy’s predecessor system

Gabriel [5]. The advantages of SDF are ease of programming, since the availability of data tokens

is static and does not need to be checked; a greater degree of setup-time syntax checking, since

sample-rate inconsistencies are easily detected by the system; run-time efficiency, since the order-

ing of Block invocation is statically determined at setup-time rather dynamically at run-time; and

automatic parallel scheduling [16-18].

1.1.3 The token flow model (BDF)

We are also exploring a third possibility, called the token flow model or boolean-con-

trolled dataflow, which extends the SDF model to permit data movement to depend on the values

of certain Boolean tokens in the system. The intent is to preserve the compile-time scheduling

properties of SDF but permit data-dependent execution. This work is very new (see [19]) and will

not be discussed further in this paper.

1.2  Code Generation Domains

A Domain in Ptolemy consists of a set of Blocks and Targets, and associated Schedulers

that conform to a common computational model. By “computational model” we mean the opera-

tional semantics governing how Blocks interact with one another. Furthermore, all Blocks and
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way. A third possibility we also exploit is for the scheduler to cluster the graph, creating a new

hierarchy that reflects the natural looping structure of the code [9]. A Universe, which contains a

complete Ptolemy application, is a type of Galaxy. It is multiply derived from both Galaxy and

class Runnable. The latter class contains methods for execution of simulation or synthesis of

code.

In this paper, we will concentrate on only two models of computation, dynamic and syn-

chronous dataflow. These are the models of computation for which we have best developed the

code synthesis technology. We will first define these models of computation. Then we will intro-

duce the modular element in Ptolemy, known as the domain, which encapsulates a single model of

computation. Afterwards, we will introduce the code generation framework of Ptolemy, which

allows definition of target architectures (both single and multiple-processor) and the various inter-

changeable schedulers. After a target architecture and domain are defined, we can then describe

the atomic unit of an algorithm in Ptolemy, the Star, and the use of code blocks (in the target lan-

guage) for code generation. Next, the various abstractions of interprocessor communication avail-

able in Ptolemy will be described: send/receive, spread/collect, and the wormhole interface. We

will then summarize the code generation procedure. Finally, we will compare Ptolemy to other

code generation environments.

Although this paper focuses on the current Ptolemy code generation domains, Ptolemy

incorporates a rich set of simulation domains. Some of the domains currently defined are discrete

event (DE), communication processes (CP), multi-threaded data flow (MTDF) and Thor (which

will be described below). The Domain and the mechanism for co-existence of Domains are the

primary abstractions that distinguish Ptolemy from otherwise comparable systems. For a descrip-

tion of the Ptolemy platform refer to [6].

1.1.1 DDF

Dynamic dataflow (DDF) is a data-driven model of computation originally proposed by

Dennis [10]. Although frequently applied to design parallel architectures, it is also suitable as a

programming model [11], and is particularly well-suited to signal processing that includes asyn-

chronous operations. An equivalent model is embodied in the predecessor system Blosim [12, 13].
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(SDF) [8] and dynamic dataflow semantics are used. DPC, by contrast, does not use dataflow

semantics.

1.1 Overview of Ptolemy

Ptolemy relies heavily on the methodology of object-oriented programming (OOP) to sup-

port heterogeneity. The basic unit of modularity in Ptolemy is the Block1, illustrated in figure 1. A

Block contains a module of code (the “go()” method) that is invoked at run-time, typically exam-

ining data present at its input Portholes and generating data on its output Portholes. Depending on

the model of computation, however, the functionality of the go() method can be very different; it

may spawn processes, for example, or synthesize assembly code for a target processor. In code

generation applications, which are the concern of this paper, the go() method always synthesizes

code in some target language. Its invocation is directed by a Scheduler (another modular object).

A Scheduler determines the operational semantics of a network of Blocks. A third type of object,

a Target, describes the specific features of a target for code generation. Blocks, Schedulers, and

Targets can be designed by end users, lending generality while encouraging modularity. The hope

is that Blocks will be well documented and stored in standard libraries; thus rendering them mod-

ular, reusable software components. The user-interface view of the system is an interconnected

block diagram.

A conventional way to manage the complexity of a large system is to introduce a hierar-

chy in the description, as shown in figure 2. The lowest level (atomic) objects in Ptolemy are of

type Star, derived from Block. A Star that generates code in some target language belongs to a

domain, as explained below. The Stars in domain named “XXX” are of type XXXStar, derived

from Star. A Galaxy, also derived from Block, contains other Blocks internally. A Galaxy may

contain internally both Galaxies and Stars. A Galaxy may exist only as a descriptive tool, in that a

Scheduler may ignore the hierarchy, viewing the entire network of blocks as flat. All our dataflow

schedulers do this to maximize the visible concurrency. Alternatively, a Scheduler may make use

of the hierarchy to minimize scheduling complexity or to structure synthesized code in a readable

1.  When we capitalize a modular element, then it represents an object type. In object-oriented programming, objects encapsulate
both data, the state of the object, and functions operating on that state, called methods.
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forward, future tools should also include high-level software synthesis for real-time control as

well as coupling to high-level hardware synthesis tools. Since the design styles for these capabili-

ties are likely to be radically different from one another, the ideal methodology must cleanly sup-

port heterogeneity. This paper will concentrate on code generation for DSP, but will describe a

software architecture capable of adapting to such heterogeneous design problems.

A number of design styles can be used to develop signal processing software. One option,

of course, is to rely on traditional high-level languages, notably C or Ada. Unfortunately, for

many intensive signal processing applications, compilers for these languages are still unable to

achieve the code efficiency demanded by designers. Twelve years after the appearance of pro-

grammable DSPs, most designers still prefer to program them in assembly language. The diffi-

culty appears to be both in the languages themselves, which are not sufficiently specific to signal

processing, and in the processor architectures, which include features that compilers cannot easily

support such as esoteric addressing modes (for example, bit reversed addressing for FFTs and

hardware support for circular buffers). Numeric C [3] offers an interesting alternative by modify-

ing the syntax of C to expose to the compiler much of the information it needs. Silage, an applica-

tive language developed by Hilfinger at U. C. Berkeley, provides another alternative. The simple

declarative semantics of the language makes very efficient code generation realistically possible

[4]. The Mentor/EDC DSPStation uses Silage for its underlying semantics.

We are pursuing a third alternative, embodied previously in the Gabriel system [5], and

more recently implemented in the Ptolemy system [6]. In this methodology, hand written assem-

bly code segments define functional operators on data streams. Code generation consists of two

phases, scheduling and synthesis. In the scheduling phase, the functional operators are possibly

partitioned for parallel execution, and for each target processor, a sequence of operator invocation

is determined. In the synthesis phase, the hand-written assembly code segments (or alternatively,

higher-level language code segments or a mixture of both) are stitched together. This methodol-

ogy has recently been commercialized in the Comdisco DPC system [1] and will be commercial-

ized in the CADIS Descartes [7] systems. The techniques we describe here are complementary to

those in DPC and Descartes, and could, in principle, be used in combination. In particular, we

focus on management of data passed between functional blocks when synchronous dataflow
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1.0 Introduction

Practical signal processing systems today are rarely implemented without software or

firmware, even at the ASIC level. Programmable DSPs, in particular, form the heart of many

implementations. An aggressive new implementation technology is to use one or more “DSP

cores” together with custom circuitry. DSP cores are programmable architectures sold as silicon

macro blocks rather than as separate components. They are used as large macrocells in applica-

tion-specific ICs. Such ASICs are customized to contain precisely the memory and peripherals

required by an application, and can also include arbitrary custom logic, configurable logic, or ana-

log circuitry.

The first major market for DSP cores is digital cellular telephony. DSP vendors have

developed specialized versions of their commodity DSPs that support both the GSM standard (for

Europe) and the IS-54 standard (for the U.S.). For example, the Ericsson HotLine GH197 is a

GSM hand-held telephone that uses an ADSP-2102 from Analog Devices. The Motorola

DSP56156 is a DSP with carefully chosen peripherals and memory capacity to support the Euro-

pean GSM standard. The Motorola DSP56166 is a variant capable of implementing the VSELP

speech coder in the U.S. and Japanese digital cellular standards.

So far, however, the customized core-based ASICs for this application are being designed

by the DSP vendor, and not by the producer of the telephone equipment. This approach is viable

because the functionality of the ASIC is specified by an international standard, and the market is

expected to be very large. However, more proprietary designs cannot proceed in this manner. The

design process will more closely resemble that of board-level products using commodity DSPs.

Such designs, of course, are mixed hardware and software designs. Our approach to code genera-

tion is carefully architected to support such heterogeneous designs.

Any complete system design methodology, therefore, must include software synthesis for

programmable devices. Mainstream design tool vendors for signal processing, such as those pro-

vided by Comdisco Systems, Mentor Graphics, and CADIS, have recognized this. They have all

recently added software synthesis for DSPs to their tools (see for example [1] and [2]). Looking
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Abstract

Ptolemy is an environment for simulation, prototyping, and software synthesis for heterogeneous

systems. It uses modern object-oriented software technology (in C++) to model each subsystem in

a natural and efficient manner, and to integrate these subsystems into a whole. The objectives of

Ptolemy encompass practically all aspects of designing signal processing and communications

systems, ranging from algorithms and communication strategies, through simulation, hardware

and software design, parallel computing, and generation of real-time prototypes. In this paper we

will introduce the software synthesis aspects of the Ptolemy system. The environment presented

here is both modular and extensible. Ptolemy allows the user to choose among various single- or

multiple-processor schedulers.
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